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What is this talk about ?
... why, information inequalities and secret sharing, of course!

1 Secret Sharing
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3 Information Inequalities
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5 Information Inequalities and Secret Sharing

6 Prospects & Open Questions
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Secret Sharing
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The Queen shall secure the British Strike Force code
What might she do ?
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Threshold secret sharing: Shamir’s scheme

Problem. For n participants:
• assign one share to each participant
• require at least m to uncover the secret
• less than m have no information

Shamir’s scheme (1979)

1 Encode the secret as s ∈ Fq where q > n

2 Generate p(X) = cm−1X
m−1 + . . .+ c1X + s with random ci ∈ Fq

3 Give the share p(i) to participant i

A polynomial of degree m − 1 is uniquely defined by m of its
values at distinct points.
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What is an Access structure ?

Definition (Access structure)

An access structure Γ on P is a monotone family of subset of P:

Γ ⊆P(P) such that ∀A ∈ Γ, A ⊆ B ⇒ B ∈ Γ

Examples:
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Definition (Access structure)

An access structure Γ on P is a monotone family of subset of P:

Γ ⊆P(P) such that ∀A ∈ Γ, A ⊆ B ⇒ B ∈ Γ

Examples:

(m, n)-threshold access structure

For n participants, a subset is authorized if it contains at least m
people:

Γ(m,n) = {A ⊆ P : |A| ≥ m}
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What is an Access structure ?

Definition (Access structure)

An access structure Γ on P is a monotone family of subset of P:

Γ ⊆P(P) such that ∀A ∈ Γ, A ⊆ B ⇒ B ∈ Γ

Examples:

Hypergraph structures

• Vertices are participants
• Hyperedges are minimal authorized groups
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Definition (Access structure)

An access structure Γ on P is a monotone family of subset of P:

Γ ⊆P(P) such that ∀A ∈ Γ, A ⊆ B ⇒ B ∈ Γ
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The Secret Sharing Setting

Problem?

Input:
• a finite discrete random variable s (secret)
• a set of n participants
• an access structure Γ that contains authorized groups.

Goal: Find random variables (called shares) to be given to participants
for implement the structure
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Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for Γ is a tuple of discrete random
variables (s,p1, . . . ,pn) such that :
• if the group A is authorized then the secret is uniquely determined

by the shares of A

, i.e.,

A ∈ Γ⇒ H(s|A) = 0

• if B is not authorized then the secret is independent of the shares
of B

, i.e.,
B /∈ Γ⇒ I(s:B) = 0

Definition (Efficiency)

The information ratio of a scheme is defined by:

ρ = max
p∈P

H(p)

H(s)
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Basic properties of perfect schemes

Propositions (Folklore)

• Every access structure can be implemented
• If a participant p appears in a minimal set of Γ then H(p) ≥ H(s)

Definition (Ideal)

A scheme is said ideal if ρ = 1.
An access structure Γ is ideal if there exists an ideal scheme for Γ.

Remark: Shamir’s threshold scheme is ideal
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Ideal schemes are matroidal

Proposition

Any linear matroid defines an ideal secret sharing scheme.

Theorem (Brickell-Davenport 1996)

For any ideal perfect secret sharing scheme r(A) = H(A)
H(s) defines the

rank function of a matroid over P ∪ {s}.

Theorem (Martí-Farré, Padró 2007)

If Γ does not induce a matroid then ρ(Γ) ≥ 3
2

only ideal access structures?
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There exists non-ideal access structures.

The access structure P4:

a b c d

is not ideal.

Proposition (Folklore) proven later

For any scheme, it holds that ρ ≥ 3
2 .

Proposition (Folklore) proven hereafter

There exists a scheme with information ratio ρ = 3
2 .
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A scheme for P4

a b c d

ρ =
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A scheme for P4

a b c da b

r1 r1 + s

ρ =
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A scheme for P4

a b c d

r1 r1 + s r1

c d

r2 + s r2

ρ = 2
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A scheme for P4

a b c d

r1 r1 + s1 r1

r2 + s1 r2

ρ = 2
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A scheme for P4

a b c d

r1 r1 + s1 r1

r2 + s1 r2

b c d

r3r3 + s2r3

ρ = 2
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A scheme for P4

a b c d

r1 r1 + s1 r1

r2 + s1 r2

r3r3 + s2r3

r4 + s2r4

ρ =
3

2
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Efficiency gap

Theorem (Csirmaz, 1994)

There exist a family of access structures Γn such that:

ρ(Γn) ≥
n

4 log n

Upper vs. Lower bounds:

n

4 log n
≤ ρ(Γ) ≤ 2O(n)︸ ︷︷ ︸
Open Problem:

fill the gap

General technique: Information Inequalities.
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Quasi-perfect Secret Sharing
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Why quasi-perfect schemes?
(Hint: nobody’s perfect)

Perfect schemes are restrictive
What if we relax perfectness and allow leaks ?

Contributions:

• introduce general definitions for quasi-perfect secret sharing
• formulate basic questions & properties
• study asymptotic properties of the efficiency parameters
• relate to a Kolmogorov complexity version
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New parameters: the leakages.

Definition
A perfect secret-sharing scheme for Γ is a tuple of discrete random
variables (s, p1, . . . , pn) such that :

• if A ∈ Γ then H(s|A) = 0

• if B /∈ Γ then I(s :B) = 0

Parameters of a scheme:
ε : missing information ratio.
δ : information leak ratio.
ρ : information ratio (efficiency).
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New parameters: the leakages.

Definition
A

perfect

secret-sharing scheme for Γ is a tuple of discrete random
variables (s, p1, . . . , pn) such that :

• if A ∈ Γ then H(s|A) ≤ εH(s)︸ ︷︷ ︸
missing information

• if B /∈ Γ then I(s :B) ≤ δH(s)︸ ︷︷ ︸
information leak

Parameters of a scheme:
ε : missing information ratio.
δ : information leak ratio.
ρ : information ratio (efficiency).
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Quasi-perfect Secret Sharing

Definition
An access structure Γ can be quasi-perfectly implemented with
information ratio ρ if there exists a sequence of secret-sharing
schemes such that:

(1) the lim sup of the information ratio does not exceed ρ;
(2) the missing information ratio tends to zero;
(3) the information leak ratio tends to zero.
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Algorithmic Scheme

Definition
An access structure Γ can be algorithmically implemented with
information ratio ρ if there exists a sequence of algorithmic
secret-sharing schemes with secrets sn such that

(0) the complexity of sn tends to infinity;
(1) the lim sup of the information ratio does not exceed ρ;
(2) the missing information ratio tends to zero;
(3) the information leak ratio tends to zero.

Algorithmic secret sharing:
• Replace Entropy (H) by Complexity (C) in the definition
• Replace random variables by binary strings
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Getting rid of missing information

• Assume we have a scheme with missing information
• Can it be made into a scheme without missing information ?

Theorem (K. 2011)

Any scheme can be converted into a scheme without missing
information but with (possibly) bigger leak and share size

Idea:
• materialize the missing information for each group
• add it to participants’ shares
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Missing information

Getting rid of missing information
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Basic Properties of QP Schemes

Corollary (K. 2011, Missing information is unimportant)

If an access structure Γ can be quasi-perfectly implemented, then it
has a quasi-perfect implementation without missing information for the
same information ratio.

Theorem (K. 2012, Uniform distribution on secrets)

If some access structure Γ can be quasi-perfectly implemented with
information ratio ρ, it can be quasi-perfectly implemented with the
same ratio by schemes with uniformly distributed secrets.
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Equivalence between secret sharing flavors

Theorem[K, 2011]: Given access structure Γ and information ratio ρ:

Quasi-perfect
scheme

Quasi-perfect
scheme without

missing information

Algorithmic
scheme

Remark: still true when ε, δ tend to fixed constants.
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Reducing the size of the secret

Changing the secret size

Suppose we have a scheme for sharing N-bits secrets.

• Question: Can we modify it to share ` < N bits ?

• scaling up is natural (independent copies)

• scaling down quasi-perfect schemes is nontrivial

• Notice: We also want to reduce the leak δN
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Reducing the size of the secret

Theorem (K. 2011)

Any scheme for N-bit secrets w/ info leak δN (N large enough) can be
converted into a scheme for 1 bit secret w/ info leak O(δ

2
3 ) and the

same size for shares.

Proof sketch : (probabilistic method)
• randomly cut the secret set into two equal parts
• define new secret accordingly
• show that a random cut achieves the given leak
• uses Höffding inequality to prove existence
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The Power of Quasi-perfect Schemes

A weak separation result

Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such
that:

• the information ratio of each scheme is exactly 1,

• without information leak,

• with vanishing missing information.

but has no perfect scheme with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).

Open question: Can we achieve a more substantial separation ?
Not with the current technique using unconditional inequalities

Tarik Kaced (CUHK) Talk at INC February 27, 2013 25 / 54



The Power of Quasi-perfect Schemes

A weak separation result

Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such
that:

• the information ratio of each scheme is exactly 1,

• without information leak,

• with vanishing missing information.

but has no perfect scheme with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).

Open question: Can we achieve a more substantial separation ?
Not with the current technique using unconditional inequalities

Tarik Kaced (CUHK) Talk at INC February 27, 2013 25 / 54



Information Inequalities
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Shannon’s entropy

Let A be a discrete random variable on the alphabet Q, equipped with
the probability distribution law p : Q→ [0, 1]. The support SA
consists of letters with positive probability.

H(A) = −
∑
a∈SA

p(a) log p(a) = ESA log p

• Amount of information contained in a random variable
• In general 0 ≤ H(A) ≤ log |SA|
• H(A) = 0⇔ A is deterministic
• H(A) = log |SA| ⇔ A is uniformly distributed over SA
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Shannon’s Information Measures

Conditional Entropy:

H(X|Y ) = H(XY )−H(Y )

≥ 0

Mutual Information:

I(X :Y ) = H(X) +H(Y )−H(XY )

≥ 0

Conditional Mutual Information:

I(X :Y |Z) = H(XZ) +H(Y Z)−H(XY Z)−H(Z)

≥ 0

Basic Inequality
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I(A:B|C)
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A B
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Linear information inequalities

Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

H(ab) ≤ H(a) +H(b) [I(a:b) ≥ 0]

H(abc) +H(c) ≤ H(ac) +H(bc) [I(a:b|c) ≥ 0]

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

H(a) ≤ H(a|b) +H(a|c) + I(b:c)

Non-Shannon-type inequalities, e.g., [Z. Zhang, R. W. Yeung, 1998] :

I(c :d) ≤ I(c :d |a) + I(c :d |b) + I(a:b)+

+I(c :d |a) + I(a:c |d) + I(a:d |c)
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H(abc) +H(c) ≤ H(ac) +H(bc) [I(a:b|c) ≥ 0]

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

H(a) ≤ H(a|b) +H(a|c) + I(b:c)

Non-Shannon-type inequalities, e.g., [Z. Zhang, R. W. Yeung, 1998] :

I(c :d) ≤ I(c :d |a) + I(c :d |b) + I(a:b)+

+I(c :d |a) + I(a:c |d) + I(a:d |c)
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Algorithmic Information Theory

Counterpart to Kolmogorov Complexity

For any binary strings x, y :

C(x) = length of a shortest program printing x ,
C(x |y) = length of a shortest program printing x given input y .

And up to O(log |xy |),

C(x) ≥ 0,

C(x |y) ≥ 0,

C(x) + C(y) ≥ C(x, y).

Theorem (Inequalities are the same, Hammer et al)

An inequality is valid for Shannon iff it is valid for Kolmogorov up to a
logarithmic term
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Essentially Conditional
Inequalities
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Conditional information inequalities

If [some linear constraints for entropies]
then [a linear inequality for entropies].

• Example 1 (trivial): If I(b:c) = 0, then H(a) ≤ H(a|b) +H(a|c).
Explanation:
H(a) ≤ H(a|b) +H(a|c) + I(b:c).

• Example 2 (trivial): If I(c :d |e) = I(c :e|d) = I(d :e|c) = 0, then
I(c :d) ≤ I(c :d |a) + I(c :d |b) + I(a:b).
Explanation:
I(c :d) ≤ I(c :d |a) + I(c :d |b) + I(a:b) + I(c :d |e) + I(c :e|d) + I(d :e|c).

• Example 3 (nontrivial) [Zhang–Yeung 1997]: If I(a:b) = I(a:b|c) = 0,
then I(c :d) ≤ I(c :d |a) + I(c :d |b).
Any explanation???
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Trivial Conditional Inequalities

For (x, y) in the gray set: if y = 0 then x ≤ 1

(0,0) (1,0) x

y

−x+ y+1≥ 0

It follows from −x + y + 1 ≥ 0.

WARNING: This picture is symbolic.
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Nontrivial Conditional Inequalities

I(a:b|c) = I(b:d |c) = 0, or
I(a:c |d) = I(a:d |c) = 0, or

I(a:b) = I(a:b|c) = 0︸ ︷︷ ︸
[Zhang–Yeung 97]

I(a:c |d) = I(c :d |a) = 0︸ ︷︷ ︸
[Matúš 99/2007]

H(c |a, b) = I(a:b|c) = 0︸ ︷︷ ︸
[Romashchenko,K. 2011]

↘ ↓ ↙
I(c :d) ≤ I(c :d |a) + I(c :d |b) + I(a:b)

Theorem (Romashchenko, K. 2011/2012)

All of these statements are essentially conditional inequalities.
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Essentially Conditional Inequalities

• Z. Zhang, R. W. Yeung 97:
if I(a:b) = I(a:b|c) = 0, then I(c :d) ≤ I(c :d |a) + I(c :d |b).

• Theorem [Romashchenko, K. 2011] This inequality is essentially
conditional, i.e.,

for all κ1, κ2 the inequality:

I(c :d) ≤ I(c :d |a) + I(c :d |b) + κ1I(a:b) + κ2I(a:b|c)

is not valid.
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Proof by ad-hoc example

Claim: For any κ1, κ2 there exist (a, b, c, d) such that:

I(c :d) 6≤ I(c :d |a) + I(c :d |b) + κ1I(a:b) + κ2I(a:b|c)

Proof:
a b c d Prob[a, b, c, d ]

0 0 0 1 (1− ε)/4

0 1 0 0 (1− ε)/4

1 0 0 1 (1− ε)/4

1 1 0 1 (1− ε)/4

1 0 1 1 ε

I(c :d) 6≤ I(c :d |a) + I(c :d |b) + κ1I(a:b) + κ2I(a:b|c)

‖ ‖ ‖ ‖ ‖
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Proof by ad-hoc example

Claim: For any κ1, κ2 there exist (a, b, c, d) such that:
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Θ(ε) 6≤ 0 + 0 + O(κ1ε
2) + 0
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Proof by geometric example

Construction of (a, b, c, d)

On the affine plane over Fq:

1 Pick a random a non-vertical line c .

2 Pick two random points a and b on c .

3 Pick a random non-degenerate parabola
d intersecting c exactly at a and b.

a

b
c

d

1 +
1

q
6≤ O

(
κ

log q

q

)
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Non-robustness of some conditional inequalities

I(a:b) = I(a:b|c) = 0⇒ I(c :d) ≤ I(c :d |a) + I(c :d |b) (ZY97)

In fact we have a stronger result. Let ε > 0, assume
• I(a:b) ≤ ε.
• I(a:b|c) ≤ ε.
• H(a, b, c, d) = const.

Then the ratio

can be made arbitrarily large.
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For almost entropic points

For n random variables, there 2n − 1 possible entropies.
When n = 3, there are 7 possible joint entropies:

(H(A), H(B), H(C), H(AB), H(AC), H(BC), H(ABC)) ∈ R7

Such a vector of entropies is called an entropic point.
An almost entropic point is the limit of a sequence of entropic points.

Theorem (Matúš 2007)

Two essentially conditional inequalities are valid for all almost entropic points

Theorem (Romashchenko, K. 2012)

Two essentially conditional inequalities are not valid for all almost entropic
points
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Geometric interpretation 1/3

For (x, y) in the gray set: if y = 0 then x ≤ 1

(0,0) (1,0) x

y

−x+ y+1≥ 0

A trivial conditional inequality can be extended to an unconditional one.
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Geometric interpretation 2/3

For (x, y) in the gray set: if y = 0 then x ≤ 1

(0,0) (1,0) x

y

This conditional inequality is implied by an infinite family of tangent
half-planes.
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Geometric interpretation 3/3

For (x, y) in the gray set: if y = 0 then x ≤ 1

(0,0) (1,0) (2,0) x

y

For the closure of this set, with the same constraint y = 0 we only have x ≤ 2.
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A Corollary

Theorem: There exist essentially conditional inequalities that hold
for almost entropic points.

⇓
Theorem [Matúš 07] The cone of linear information inequalities with 4

random variables is not polyhedral, i.e., there exist infinitely many
independent linear information inequalities.
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For Kolmogorov Complexity

Conditional Algorithmic Inequalities
even more subtleties

Need to add a precision for conditions: f (N)

(where N is the complexity of the tuple of strings)

• Some inequalities are valid up to O(f (N))

• Some inequalities are valid up to (at least) O
(√

Nf (N)
)

• Some inequalities are not valid (O(N) counterexample)
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Information Inequalities and
Secret Sharing
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PREVIOUSLY, ON SECRET SHARING.
There exist non-ideal access structures.

The access structure P4:

a b c d

is not ideal.

Proposition (Folklore) proven hereafter

For any scheme, it holds that ρ ≥ 3
2
.

Proposition (Folklore) proven earlier

There exists a scheme with information ratio ρ = 3
2
.
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Proof by (Venn) Information Diagram

a b c d

AB

C

D
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in B or C
represent:

H(BC)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both A and B
represent:

I(A:B)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both C and D
but not A represent:

I(C :D|A)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in B or C but
not A nor D represent:

H(BC|AD)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both B and D
but not A nor C represent:

I(B :D|AC)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Cells contained in both A and C
but not B represent:

I(A:C|B)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Actually, we just proved an
identity without words...

H(BC) = I(A:C|B) + I(B :D|AC) +H(BC|AD) + I(A:B) + I(C :D|A).
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

..or an inequality, since all
quantities are non-negative.

H(BC) ≥ I(A:C|B) + I(B :D|AC) +H(BC|AD).
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

Using the perfect secret sharing
requirements, we obtain:

H(BC) ≥ 3H(S).
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

H(B) ≥ 1.5H(S) or H(C) ≥ 1.5H(S)
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Proof by (Venn) Information Diagram

a b c d

AB

C

D

ρ(P4) ≥
3

2

H(B) ≥ 1.5H(S) or H(C) ≥ 1.5H(S)
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Corollary

The proof is valid for the following access structures

a b c d

a b

c

d

a c d

b

a c d

b
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The Vámos matroid is far from ideal

Theorem (Current bounds)

For the two non-isomorphic access structures V1 and
V6 related to the Vámos matroid:

9

8
≤ ρ(V1) ≤

5

4

19

17
≤ ρ(V6) ≤

5

4

The proof is more involved and uses
non-Shannon-type inequalities from Zhang-Yeung and
Dougherty et al.

1

2

3

4

5

6

7

8
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What is the power of non-Shannon inequalities?

Open question: Do perfect secret sharing schemes require shares of
exponential size?

1 Best known Shannon-type lower bound: θ
(
n
log n

)
.

2 Best possible Shannon-type lower bound: θ(n)

3 Best possible lower bound using (non-Shannon-type) ineq. up to
5 variables: θ(n)

Recent results:
• Using k-variables inequalities: θ(poly(n)) (Padró preprint)
• Equivalence of the 2 known techniques for non-Shannon-type

inequalities (K. submitted)

Tarik Kaced (CUHK) Talk at INC February 27, 2013 51 / 54



Prospects & Open Questions
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Conclusion

Open questions and future research

1 Can quasi-perfect schemes be substantially more efficient than (plain)
perfect schemes?

2 (Related) Can we use essentially conditional inequalities in secret
sharing.

3 What are the (asymptotic) properties of optimal secret sharing schemes

4 General picture: study almost entropic points at the boundary of the
entropy region.

5 Also, what is the type of one of Matúš’ essentially conditional inequality?
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Merci de votre attention.

Des questions?
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