Secret Sharing and Information Inequalities

Tarik Kaced

Post-doctoral fellow at the Institute of Network Coding The Chinese University of Hong Kong

February 27, 2013

What is this talk about ?

... why, information inequalities and secret sharing, of course!

- Secret Sharing
- Quasi-perfect Secret Sharing
- Information Inequalities
- 4 Essentially Conditional Inequalities
- Information Inequalities and Secret Sharing
- 6 Prospects & Open Questions

Secret Sharing

The Queen shall secure the British Strike Force code

What might she do ?

The Queen shall secure the British Strike Force code

What might she do ?

Threshold secret sharing: Shamir's scheme

Problem. For *n* participants:

- assign one share to each participant
- require at least *m* to uncover the secret
- less than *m* have no information

Threshold secret sharing: Shamir's scheme

Problem. For *n* participants:

- assign one share to each participant
- require at least *m* to uncover the secret
- less than *m* have no information

Shamir's scheme (1979)

- **1** Encode the secret as $s \in \mathbb{F}_q$ where q > n
- **2** Generate $p(X) = c_{m-1}X^{m-1} + \ldots + c_1X + s$ with random $c_i \in \mathbb{F}_q$

3 Give the share p(i) to participant *i*

Threshold secret sharing: Shamir's scheme

Problem. For *n* participants:

- assign one share to each participant
- require at least *m* to uncover the secret
- less than *m* have no information

Shamir's scheme (1979)

- **1** Encode the secret as $s \in \mathbb{F}_q$ where q > n
- 2 Generate $p(X) = c_{m-1}X^{m-1} + \ldots + c_1X + s$ with random $c_i \in \mathbb{F}_q$

3 Give the share p(i) to participant *i*

A polynomial of degree m-1 is uniquely defined by m of its values at distinct points.

Tarik Kaced ((CUHK)
	/

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

 $\Gamma \subseteq \mathscr{P}(\mathcal{P})$ such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

 $\Gamma \subseteq \mathscr{P}(\mathcal{P})$ such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

Examples:

(m, n)-threshold access structure

For *n* participants, a subset is authorized if it contains at least *m* people:

$$\Gamma_{(m,n)} = \{A \subseteq \mathcal{P} : |A| \ge m\}$$

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

 $\Gamma \subseteq \mathscr{P}(\mathcal{P})$ such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

Examples:

Hypergraph structures

- Vertices are participants
- Hyperedges are minimal authorized groups

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

 $\Gamma \subseteq \mathscr{P}(\mathcal{P})$ such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

Examples:

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

$$\Gamma \subseteq \mathscr{P}(\mathcal{P})$$
 such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

Examples:

An access structure Γ on \mathcal{P} is a **monotone** family of subset of \mathcal{P} :

$$\Gamma \subseteq \mathscr{P}(\mathcal{P})$$
 such that $\forall A \in \Gamma, A \subseteq B \Rightarrow B \in \Gamma$

Examples:

The Secret Sharing Setting

Problem?

Input:

- a finite discrete random variable s (secret)
- a set of *n* participants
- an access structure Γ that contains authorized groups.

The Secret Sharing Setting

Problem?

Input:

- a finite discrete random variable s (secret)
- a set of *n* participants
- an access structure Γ that contains authorized groups.

Goal: Find random variables (called shares) to be given to participants for implement the structure

Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for Γ is a tuple of discrete random variables (s,p_1,\ldots,p_n) such that :

• if the group *A* is authorized then the secret is uniquely determined by the shares of *A*

• if *B* is not authorized then the secret is independent of the shares of *B*

Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for Γ is a tuple of discrete random variables (s,p_1,\ldots,p_n) such that :

• if the group *A* is authorized then the secret is uniquely determined by the shares of *A*, i.e.,

$$A \in \Gamma \Rightarrow H(\mathbf{s}|\mathbf{A}) = 0$$

• if *B* is not authorized then the secret is independent of the shares of *B*, i.e.,

$$B \notin \Gamma \Rightarrow I(\mathbf{s}: \mathbf{B}) = 0$$

Definition (perfect secret-sharing schemes)

A perfect secret sharing scheme for Γ is a tuple of discrete random variables (s,p_1,\ldots,p_n) such that :

• if the group *A* is authorized then the secret is uniquely determined by the shares of *A*, i.e.,

$$A \in \Gamma \Rightarrow H(\mathbf{s}|\mathbf{A}) = 0$$

• if *B* is not authorized then the secret is independent of the shares of *B*, i.e.,

$$B \notin \Gamma \Rightarrow I(\mathbf{s}: \mathbf{B}) = 0$$

Definition (Efficiency)

The information ratio of a scheme is defined by:

$$o = \max_{p \in \mathcal{P}} \frac{H(\mathbf{p})}{H(\mathbf{s})}$$
Propositions (Folklore)

- Every access structure can be implemented
- If a participant *p* appears in a minimal set of Γ then $H(\mathbf{p}) \ge H(\mathbf{s})$

Propositions (Folklore)

- Every access structure can be implemented
- If a participant *p* appears in a minimal set of Γ then $H(\mathbf{p}) \ge H(\mathbf{s})$

Definition (Ideal)

A scheme is said ideal if $\rho = 1$. An access structure Γ is ideal if there exists an ideal scheme for Γ .

Propositions (Folklore)

- Every access structure can be implemented
- If a participant *p* appears in a minimal set of Γ then $H(\mathbf{p}) \ge H(\mathbf{s})$

Definition (Ideal)

A scheme is said ideal if $\rho = 1$. An access structure Γ is ideal if there exists an ideal scheme for Γ .

Remark: Shamir's threshold scheme is ideal

Proposition

Any linear matroid defines an ideal secret sharing scheme.

Theorem (Brickell-Davenport 1996)

For any ideal perfect secret sharing scheme $r(A) = \frac{H(A)}{H(s)}$ defines the rank function of a matroid over $\mathcal{P} \cup \{s\}$.

Theorem (Martí-Farré, Padró 2007)

If Γ does not induce a matroid then $\rho(\Gamma) \geq \frac{3}{2}$

only ideal access structures?

There exists non-ideal access structures.

The access structure P_4 :

is not ideal.

There exists non-ideal access structures.

The access structure P_4 :

is not ideal.

Proposition (Folklore)	proven later
For any scheme, it hole	ds that $\rho \geq \frac{3}{2}$.	
Proposition (Folklore)		proven hereafter
There exists a scheme	with information ratio $ ho=rac{32}{22}$	<u>}</u> .
Tarik Kaced (CUHK)	Talk at INC	February 27, 2013 12 / 54

$$\rho = 2$$

$$\rho = 2$$

$$\rho = 2$$

A scheme for P_4

$$\rho = 2$$

$$\rho = \frac{3}{2}$$

Theorem (Csirmaz, 1994)

There exist a family of access structures Γ_n such that:

$$\rho(\Gamma_n) \geq \frac{n}{4\log n}$$

Theorem (Csirmaz, 1994)

There exist a family of access structures Γ_n such that:

$$\rho(\Gamma_n) \geq \frac{n}{4\log n}$$

Upper vs. Lower bounds:

General technique: Information Inequalities.

Tarik Kaced (CUHK)

Talk at INC

February 27, 2013 14 / 54

Quasi-perfect Secret Sharing

Perfect schemes are restrictive

What if we relax perfectness and allow leaks ?

Contributions:

- introduce general definitions for quasi-perfect secret sharing
- formulate basic questions & properties
- study asymptotic properties of the efficiency parameters
- relate to a Kolmogorov complexity version

A perfect secret-sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that :

• if
$$A \in \Gamma$$
 then $H(s|A) = 0$

• if
$$B \notin \Gamma$$
 then $I(s:B) = 0$

New parameters: the leakages.

Definition

A secret-sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that :

• if $A \in \Gamma$ then $H(s|A) \leq \varepsilon H(s)$

missing information

• if
$$B \notin \Gamma$$
 then $I(s:B) \leq$

A secret-sharing scheme for Γ is a tuple of discrete random variables (s, p_1, \ldots, p_n) such that :

• if $A \in \Gamma$ then $H(s|A) \leq \varepsilon H(s)$

missing information

• if
$$B \notin \Gamma$$
 then $I(s:B) \leq$

Parameters of a scheme:

- ε : missing information ratio.
- δ : information leak ratio.
- ρ : information ratio (efficiency).

An access structure Γ can be **quasi-perfectly implemented with information ratio** ρ if there exists a sequence of secret-sharing schemes such that:

- (1) the lim sup of the information ratio does not exceed ρ ;
- (2) the missing information ratio tends to zero;
- (3) the information leak ratio tends to zero.

An access structure Γ can be **algorithmically implemented with information ratio** ρ if there exists a sequence of algorithmic secret-sharing schemes with secrets s_n such that

(0) the complexity of s_n tends to infinity;

- (1) the lim sup of the information ratio does not exceed ρ ;
- (2) the missing information ratio tends to zero;
- (3) the information leak ratio tends to zero.

Algorithmic secret sharing:

- Replace Entropy (H) by Complexity (C) in the definition
- Replace random variables by binary strings

Getting rid of missing information

- Assume we have a scheme with missing information
- Can it be made into a scheme without missing information ?

Getting rid of missing information

- Assume we have a scheme with missing information
- Can it be made into a scheme without missing information ?

Theorem (K. 2011)

Any scheme can be converted into a scheme without missing information but with (possibly) bigger leak and share size

Getting rid of missing information

- Assume we have a scheme with missing information
- Can it be made into a scheme without missing information ?

Theorem (K. 2011)

Any scheme can be converted into a scheme without missing information but with (possibly) bigger leak and share size

Idea:

- materialize the missing information for each group
- add it to participants' shares

Corollary (K. 2011, Missing information is unimportant)

If an access structure $\[Gamma]$ can be quasi-perfectly implemented, then it has a quasi-perfect implementation without missing information for the same information ratio.

Corollary (K. 2011, Missing information is unimportant)

If an access structure Γ can be quasi-perfectly implemented, then it has a quasi-perfect implementation without missing information for the same information ratio.

Theorem (K. 2012, Uniform distribution on secrets)

If some access structure Γ can be quasi-perfectly implemented with information ratio ρ , it can be quasi-perfectly implemented with the same ratio by schemes with uniformly distributed secrets.

Equivalence between secret sharing flavors

Theorem[K, 2011]: Given access structure Γ and information ratio ρ :

Remark: still true when ε , δ tend to fixed constants.

Changing the secret size

Suppose we have a scheme for sharing *N*-bits secrets.

- Question: Can we modify it to share l < N bits ?
- scaling up is natural (independent copies)
- scaling down quasi-perfect schemes is nontrivial
- Notice: We also want to reduce the leak δN

Theorem (K. 2011)

Any scheme for *N*-bit secrets w/ info leak δN (*N* large enough) can be converted into a scheme for 1 bit secret w/ info leak $O(\delta^{\frac{2}{3}})$ and the same size for shares.

Theorem (K. 2011)

Any scheme for *N*-bit secrets *w*/ info leak δN (*N* large enough) can be converted into a scheme for 1 bit secret *w*/ info leak $O(\delta^{\frac{2}{3}})$ and the same size for shares.

Proof sketch : (probabilistic method)

- randomly cut the secret set into two equal parts
- define new secret accordingly
- show that a random cut achieves the given leak
- uses Höffding inequality to prove existence

The Power of Quasi-perfect Schemes

A weak separation result

Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such that:

- the information ratio of each scheme is exactly 1,
- without information leak,
- with vanishing missing information.

but has **no perfect scheme** with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).

The Power of Quasi-perfect Schemes

A weak separation result

Proposition (K. 2011)

There is an access structure which can be implemented quasi-perfectly such that:

- the information ratio of each scheme is exactly 1,
- without information leak,
- with vanishing missing information.

but has **no perfect scheme** with information ratio exactly 1.

The proof is mainly based on an argument of F. Matúš (1995).

Open question: Can we achieve a more substantial separation ? **Not with the current technique using unconditional inequalities**

Information Inequalities

Let *A* be a **discrete** random variable on the alphabet *Q*, equipped with the **probability distribution** law $p : Q \rightarrow [0, 1]$. The **support** S_A consists of letters with positive probability.

$$H(A) = -\sum_{a \in \mathcal{S}_A} p(a) \log p(a) = \mathbb{E}_{\mathcal{S}_A} \log p$$
Let *A* be a **discrete** random variable on the alphabet *Q*, equipped with the **probability distribution** law $p : Q \rightarrow [0, 1]$. The **support** S_A consists of letters with positive probability.

$$H(A) = -\sum_{a \in S_A} p(a) \log p(a) = \mathbb{E}_{S_A} \log p$$

- Amount of information contained in a random variable
- In general $0 \le H(A) \le \log |\mathcal{S}_A|$
- $H(A) = 0 \Leftrightarrow A$ is deterministic
- $H(A) = \log |\mathcal{S}_A| \Leftrightarrow A$ is uniformly distributed over \mathcal{S}_A

Conditional Entropy:

$$H(X|Y) = H(XY) - H(Y)$$

Mutual Information:

$$I(X:Y) = H(X) + H(Y) - H(XY)$$

Conditional Mutual Information:

$$I(X:Y|Z) = H(XZ) + H(YZ) - H(XYZ) - H(Z)$$

Conditional Entropy:

$$H(X|Y) = H(XY) - H(Y) \ge 0$$

Mutual Information:

$$I(X:Y) = H(X) + H(Y) - H(XY) \ge 0$$

Conditional Mutual Information:

$$I(X:Y|Z) = H(XZ) + H(YZ) - H(XYZ) - H(Z) \ge 0$$

Basic Inequality

Linear information inequalities

Pippenger (1986): What are the laws of Information Theory?

Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

$$\begin{array}{ll} H(ab) \leq H(a) + H(b) & [I(a:b) \geq 0] \\ H(abc) + H(c) \leq H(ac) + H(bc) & [I(a:b|c) \geq 0] \end{array}$$

Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

$$\begin{aligned} H(ab) &\leq H(a) + H(b) & [I(a:b) \geq 0] \\ H(abc) + H(c) &\leq H(ac) + H(bc) & [I(a:b|c) \geq 0] \end{aligned}$$

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

$$H(a) \le H(a|b) + H(a|c) + I(b:c)$$

Pippenger (1986): What are the laws of Information Theory?

Basic inequality:

$$\begin{aligned} H(ab) &\leq H(a) + H(b) & [I(a:b) \geq 0] \\ H(abc) + H(c) &\leq H(ac) + H(bc) & [I(a:b|c) \geq 0] \end{aligned}$$

Shannon-type inequalities: any positive combination of basic ineq., e.g.,

$$H(a) \le H(a|b) + H(a|c) + I(b:c)$$

Non-Shannon-type inequalities, e.g., [Z. Zhang, R. W. Yeung, 1998] :

$$l(c:d) \leq l(c:d|a) + l(c:d|b) + l(a:b) + + l(c:d|a) + l(a:c|d) + l(a:d|c)$$

Counterpart to Kolmogorov Complexity

For any binary strings *x*, *y*:

C(x) = length of a shortest program printing x,

C(x|y) = length of a shortest program printing x given input y.

And up to $O(\log |xy|)$,

 $C(x) \ge 0,$ $C(x|y) \ge 0,$ $C(x) + C(y) \ge C(x, y).$

Counterpart to Kolmogorov Complexity

For any binary strings *x*, *y*:

C(x) = length of a shortest program printing x,

C(x|y) = length of a shortest program printing x given input y.

And up to $O(\log |xy|)$,

 $C(x) \ge 0,$ $C(x|y) \ge 0,$ $C(x) + C(y) \ge C(x, y).$

Theorem (Inequalities are the same, Hammer *et al*)

An inequality is valid for Shannon iff it is valid for Kolmogorov up to a logarithmic term

Tarik Kaced (CUHK)

Essentially Conditional Inequalities

If [some linear constraints for entropies] then [a linear inequality for entropies].

If [some linear constraints for entropies] then [a linear inequality for entropies].

• Example 1 (trivial): If I(b:c) = 0, then $H(a) \le H(a|b) + H(a|c)$. Explanation:

 $H(a) \leq H(a|b) + H(a|c) + I(b:c).$

If [some linear constraints for entropies] then [a linear inequality for entropies].

- Example 1 (trivial): If I(b:c) = 0, then $H(a) \le H(a|b) + H(a|c)$. Explanation: $H(a) \le H(a|b) + H(a|c) + I(b:c)$.
- Example 2 (trivial): If I(c:d|e) = I(c:e|d) = I(d:e|c) = 0, then $I(c:d) \le I(c:d|a) + I(c:d|b) + I(a:b)$.

Explanation:

 $I(c:d) \le I(c:d|a) + I(c:d|b) + I(a:b) + I(c:d|e) + I(c:e|d) + I(d:e|c).$

If [some linear constraints for entropies] then [a linear inequality for entropies].

- Example 1 (trivial): If I(b:c) = 0, then $H(a) \le H(a|b) + H(a|c)$. Explanation: $H(a) \le H(a|b) + H(a|c) + I(b:c)$.
- Example 2 (trivial): If I(c:d|e) = I(c:e|d) = I(d:e|c) = 0, then $I(c:d) \le I(c:d|a) + I(c:d|b) + I(a:b)$. Explanation: $I(c:d) \le I(c:d|a) + I(c:d|b) + I(a:b) + I(c:d|e) + I(c:e|d) + I(d:e|c)$.
- Example 3 (nontrivial) [Zhang–Yeung 1997]: If *I*(*a*:*b*) = *I*(*a*:*b*|*c*) = 0, then *I*(*c*:*d*) ≤ *I*(*c*:*d*|*a*) + *I*(*c*:*d*|*b*).

Any explanation???

Trivial Conditional Inequalities

For (x, y) in the gray set: if y = 0 then $x \le 1$

It follows from $-x + y + 1 \ge 0$.

WARNING: This picture is symbolic.

Tarik Kaced (CUHK)

Nontrivial Conditional Inequalities

Nontrivial Conditional Inequalities

Theorem (Romashchenko, K. 2011/2012)

All of these statements are essentially conditional inequalities.

Tarik Kaced (CUHK)

• Z. Zhang, R. W. Yeung 97:

if I(a:b) = I(a:b|c) = 0, then $I(c:d) \le I(c:d|a) + I(c:d|b)$.

• Z. Zhang, R. W. Yeung 97:

if I(a:b) = I(a:b|c) = 0, then $I(c:d) \le I(c:d|a) + I(c:d|b)$.

• **Theorem** [Romashchenko, K. 2011] This inequality is *essentially conditional*, i.e.,

for all κ_1 , κ_2 the inequality:

 $I(c:d) \le I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

is not valid.

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that: $I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that: $I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

Proof:

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that: $I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

Proof:

а	b	С	d	Prob[<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>]
0	0	0	1	$(1-\varepsilon)/4$
0	1	0	0	$(1-\varepsilon)/4$
1	0	0	1	$(1-\varepsilon)/4$
1	1	0	1	$(1-\varepsilon)/4$
1	0	1	1	ε

 $I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

0

Tarik Kaced (CUHK)

0

February 27, 2013 37 / 54

0

Claim: For any κ_1, κ_2 there exist (a, b, c, d) such that: $I(c:d) \leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

Proof:

а	b	С	d	Prob[<i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>]
0	0	0	1	$(1-\varepsilon)/4$
0	1	0	0	$(1-\varepsilon)/4$
1	0	0	1	$(1-\varepsilon)/4$
1	1	0	1	$(1-\varepsilon)/4$
1	0	1	1	ε

 $I(c:d) \not\leq I(c:d|a) + I(c:d|b) + \kappa_1 I(a:b) + \kappa_2 I(a:b|c)$

 $\Theta(\varepsilon) \leq 0 + 0 + O(\kappa_1 \varepsilon^2) + 0$

Construction of (*a*, *b*, *c*, *d*)

On the affine plane over \mathbb{F}_q :

1 Pick a random a non-vertical line c.

2 Pick two random points a and b on c.

Construction of (*a*, *b*, *c*, *d*)

On the affine plane over \mathbb{F}_q :

1 Pick a random a non-vertical line c.

2 Pick two random points a and b on c.

Construction of (*a*, *b*, *c*, *d*)

On the affine plane over \mathbb{F}_q :

1 Pick a random a non-vertical line c.

2 Pick two random points a and b on c.

Construction of (*a*, *b*, *c*, *d*)

On the affine plane over \mathbb{F}_q :

1 Pick a random a non-vertical line c.

2 Pick two random points *a* and *b* on *c*.

$$I(c:d) \le \kappa [I(c:d|a) + I(c:d|b) + I(a:b) + I(a:b|c) + H(c|ab)]$$

Construction of (*a*, *b*, *c*, *d*)

On the affine plane over \mathbb{F}_q :

1 Pick a random a non-vertical line c.

2 Pick two random points *a* and *b* on *c*.

$$I(c:d) \le \kappa [I(c:d|a) + I(c:d|b) + I(a:b) + I(a:b|c) + H(c|ab)]$$
$$1 + \frac{1}{q} \le O\left(\kappa \frac{\log q}{q}\right)$$

$$I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \le I(c:d|a) + I(c:d|b)$$
(ZY97)

- $I(a:b) \leq \epsilon$.
- $I(a:b|c) \leq \epsilon$.
- *H*(*a*, *b*, *c*, *d*) = *const*.

$$I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \le I(c:d|a) + I(c:d|b)$$
(ZY97)

- $I(a:b) \leq \epsilon$.
- $I(a:b|c) \leq \epsilon$.

•
$$H(a, b, c, d) = const.$$

Then the ratio

$$\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}$$

can be made arbitrarily large.

Tarik Kaced (CUHK)

$$I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \le I(c:d|a) + I(c:d|b)$$
(ZY97)

- $I(a:b) \leq \epsilon$.
- $I(a:b|c) \leq \epsilon$.

•
$$H(a, b, c, d) = const.$$

Then the ratio

$$\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}$$

can be made arbitrarily large.

Tarik Kaced (CUHK)

$$I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \le I(c:d|a) + I(c:d|b)$$
(ZY97)

- $I(a:b) \leq \epsilon$.
- $I(a:b|c) \leq \epsilon$.

•
$$H(a, b, c, d) = const.$$

Then the ratio

$$\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}$$

can be made arbitrarily large.

Tarik Kaced (CUHK)

$$I(a:b) = I(a:b|c) = 0 \Rightarrow I(c:d) \le I(c:d|a) + I(c:d|b)$$
(ZY97)

- $I(a:b) \leq \epsilon$.
- $I(a:b|c) \leq \epsilon$.

•
$$H(a, b, c, d) = const.$$

Then the ratio

$$\frac{I(c:d)}{I(c:d|a) + I(c:d|b)}$$

can be made arbitrarily large.

For almost entropic points

For *n* random variables, there $2^n - 1$ possible entropies. When n = 3, there are 7 possible joint entropies:

 $(H(A), H(B), H(C), H(AB), H(AC), H(BC), H(ABC)) \in \mathbb{R}^7$

Such a vector of entropies is called an **entropic point**. An **almost entropic point** is the limit of a sequence of entropic points.
For almost entropic points

For *n* random variables, there $2^n - 1$ possible entropies. When n = 3, there are 7 possible joint entropies:

 $(H(A), H(B), H(C), H(AB), H(AC), H(BC), H(ABC)) \in \mathbb{R}^7$

Such a vector of entropies is called an **entropic point**. An **almost entropic point** is the limit of a sequence of entropic points.

Theorem (Matúš 2007)

Two essentially conditional inequalities are valid for all almost entropic points

Theorem (Romashchenko, K. 2012)

Two essentially conditional inequalities **are not valid** for all almost entropic points

Geometric interpretation 1/3

For (x, y) in the gray set: if y = 0 then $x \le 1$

A trivial conditional inequality can be extended to an unconditional one.

Tarik Kaced (CUHK)

Talk at INC

Geometric interpretation 2/3

For (x, y) in the gray set: if y = 0 then $x \le 1$

This conditional inequality is implied by an infinite family of tangent half-planes.

Tarik Kaced ((CUHK)

Talk at INC

Geometric interpretation 3/3

For (x, y) in the gray set: if y = 0 then $x \le 1$

For the closure of this set, with the same constraint y = 0 we only have $x \le 2$.

Tarik Kaced (CUHK)

Theorem: There exist **essentially conditional** inequalities that hold for almost entropic points.

Theorem [Matúš 07] The cone of linear information inequalities with 4 random variables is **not polyhedral**, i.e., there exist infinitely many independent linear information inequalities.

Conditional Algorithmic Inequalities

even more subtleties

Need to add a precision for conditions: f(N) (where *N* is the complexity of the tuple of strings)

- Some inequalities are valid up to O(f(N))
- Some inequalities are valid up to (at least) $O\left(\sqrt{Nf(N)}\right)$
- Some inequalities are not valid (*O*(*N*) counterexample)

Information Inequalities and Secret Sharing

PREVIOUSLY, ON SECRET SHARING.

There exist non-ideal access structures.

The access structure P_4 :

is not ideal.

Proposition (Folklore)proven hereafterFor any scheme, it holds that $\rho \geq \frac{3}{2}$.Proposition (Folklore)proven earlier

There exists a scheme with information ratio $\rho = \frac{3}{2}$.

Cells contained in *B* or *C* represent:

H(BC)

Cells contained in both *A* and *B* represent:

I(A:B)

Cells contained in both *C* and *D* but not *A* represent:

I(C:D|A)

Cells contained in *B* or *C* but not *A* nor *D* represent:

H(BC|AD)

Cells contained in both *B* and *D* but not *A* nor *C* represent:

I(B:D|AC)

Cells contained in both A and C but not B represent:

I(A:C|B)

Actually, we just proved an identity without words...

H(BC) = I(A:C|B) + I(B:D|AC) + H(BC|AD) + I(A:B) + I(C:D|A).

..or an inequality, since all quantities are non-negative.

 $H(BC) \ge I(A:C|B) + I(B:D|AC) + H(BC|AD).$

Using the perfect secret sharing requirements, we obtain:

 $H(BC) \geq 3H(S).$

$H(B) \ge 1.5H(S)$ or $H(C) \ge 1.5H(S)$

 $H(B) \ge 1.5H(S)$ or $H(C) \ge 1.5H(S)$

The proof is valid for the following access structures

Theorem (Current bounds)

For the two non-isomorphic access structures V_1 and V_6 related to the Vámos matroid:

$$\frac{9}{8} \le \rho(V_1) \le \frac{5}{4} \qquad \qquad \frac{19}{17} \le \rho(V_6) \le \frac{5}{4}$$

The proof is more involved and uses non-Shannon-type inequalities from Zhang-Yeung and Dougherty *et al.*

Open question: Do perfect secret sharing schemes require shares of exponential size?

- **1** Best known Shannon-type lower bound: $\theta\left(\frac{n}{\log n}\right)$.
- **2** Best possible Shannon-type lower bound: $\theta(n)$
- **3** Best possible lower bound using (non-Shannon-type) ineq. up to 5 variables: $\theta(n)$

Recent results:

- Using k-variables inequalities: θ(poly(n))
 (Padró preprint)
- Equivalence of the 2 known techniques for non-Shannon-type inequalities (K. submitted)

Prospects & Open Questions

Open questions and future research

- 1 Can quasi-perfect schemes be substantially more efficient than (plain) perfect schemes?
- (Related) Can we use essentially conditional inequalities in secret sharing.
- 3 What are the (asymptotic) properties of optimal secret sharing schemes
- General picture: study almost entropic points at the boundary of the entropy region.
- 5 Also, what is the type of one of Matúš' essentially conditional inequality?

Merci de votre attention.

Des questions?